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The light σ-meson
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Abstract. In the framework of the dispersion relation N/D-approach, we restore the low-energy ππ
(IJPC = 00++)-wave amplitude sewing it with the previously obtained K-matrix solution for the re-
gion 450–1900MeV. The restored N/D-amplitude has a pole on the second sheet of the complex-s plane
near the ππ threshold, that is the light σ-meson.

PACS. 12.39.Mk Glueball and nonstandard multi-quark/gluon states – 12.38.-t Quantum chromodynamics
– 14.40.-n Mesons

At present the understanding of scalar meson is one
of the key problems for the Strong-QCD physics. The ππ
low-mass data provide indications on the existence of a
low-mass σ-meson. This state is beyond qq̄ and gluonium
systematics, which makes it necessary to confirm its exis-
tence as well as to study the possible mechanisms of its
formation.

Experimental data on meson spectra accumulated
by the Crystal Barrel Collaboration [1], GAMS [2] and
BNL [3] groups provided a good basis for setting up the
qq̄/gluonium classification of the light scalars. For the
(IJPC = 00++)-wave, the combined K-matrix analysis
of the reactions ππ → ππ, KK̄, ηη, ηη′, ππππ has been
carried out over the mass range 450–1900MeV [4,5], then
the K-matrix analysis was extended to the waves 1

20
+ [6]

and 10+ [5], thus making it possible to establish the qq̄
systematics of scalars for 13P0qq̄ and 23P0qq̄ multiplets.

The advantage of the K-matrix representation is that
it allows us not only to determine the locations and par-
tial widths of resonances but also to study the char-
acteristics of corresponding states with switched-off de-
cay channels: these “primary states”, or “bare states”
(i.e. states without a cloud of mesons produced by de-
cay processes) are suitable objects for the qq̄/gluonium
classification (see [7] for details). The decay processes in
the scalar/isoscalar sector cause a strong mixing which
destroys the qq̄/gluonium classification. Another impor-
tant effect generated by transitions (qq̄)1 → real mesons
→ (qq̄)2 is an accumulation of widths of neighbouring res-
onances by one of them, that results in appearance of a
broad state.

According to [4,5], five bare scalar/isoscalar states are
located in the region 700–1800MeV: f0bare(720 ± 100),
f0bare(1230± 50), f0bare(1260± 30), f0bare(1600± 50) and
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f0bare(1800 ± 30). Four of them are members of the qq̄
nonets 13P0qq̄ and 23P0qq̄, while one state, f0bare(1260±
30) or f0bare(1600± 50), is the lightest glueball; results of
the lattice calculations [8] tell us that it is f0bare(1600±50).
After the mixing originated from the decay processes,
the primary, or bare states are transformed into a set of
resonances: f0(980), f0(1370), f0(1500), f0(1530 +90

−250) and
f0(1750). The state f0(1530 +90

−250) is rather broad, its large
width is due to the accumulation of widths of neighbour-
ing resonances: the gluonium and qq̄ states are strongly
mixed because the transition gluonium → qq̄ is not sup-
pressed in terms of the rules of 1/N expansion [9]. The
gluonium component is shared between the broad state
f0(1530 +90

−250) and the scalars f0(1370) and f0(1500).
An important result of the article [4,5] is that the

K-matrix 00++-amplitude has no pole singularities in
the region 500–800MeV. Here the ππ-scattering phase
δ0
0 increases smoothly reaching 90◦ at 800–900MeV. A
straightforward explanation of such a behaviour of δ0

0

might consist in the presence of a broad resonance, with
a mass about 600–900MeV and width Γ ∼ 500MeV (for
example, see refs. [10,11] and references therein). How-
ever, according to the K-matrix solution [4,5], the 00++-
amplitude does not contain pole singularities on the sec-
ond sheet of the complex-Mππ plane inside the interval
450 ≤ ReMππ ≤ 900MeV: the K-matrix amplitude has a
low-mass pole only, which is located on the second sheet
either near the ππ threshold or even below it. In [4,5], the
presence of this pole was not emphasized, for the left-hand
cut, which is important for the reconstruction of analytic
structure of the low-energy partial amplitude, was taken
into account only indirectly; a proper way for the descrip-
tion of the low-mass amplitude must be the dispersion
relation representation.

In this paper the ππ-scattering N/D-amplitude is
reconstructed in the region of small Mππ being sewed
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with the K-matrix solution [4,5] found for Mππ ∼ 450–
1950MeV. More specifically, using the data for δ0

0 , we con-
struct the N/D amplitude below 900MeV sewing it with
the K-matrix amplitude, bearing in mind to make a con-
tinuation of the amplitude into the region s = M2

ππ ∼ 0.
With this sewing we strictly follow the results obtained
for the K-matrix amplitude in the region 450–900MeV,
that is, the region where we can trust the K-matrix rep-
resentation of the amplitude. Recall that the K-matrix
representation allows us to restore correctly the analytic
structure of the amplitude in the region s > 0 (by tak-
ing into account threshold and pole singularities) but not
the left-hand singularities at s ≤ 0 (where singularities
are related to forces). Therefore, being cautious, we can-
not be quite confident of the K-matrix results below ππ
threshold.

The dispersion relation amplitude is reconstructed
with the method of approximation of the left-hand cut
suggested in [12]. The found N/D-amplitude provides
us with a good description of δ0

0 from the threshold to
900MeV, that includes the region where δ0

0 ∼ 90◦. This
amplitude does not have a pole in the region 500–900MeV;
instead, the pole is located near the ππ threshold. This
pole corresponds to the light σ-meson.

1 Dispersion relation representation for the
ππ scattering amplitude below 900 MeV

The partial pion-pion scattering amplitude being a func-
tion of the invariant energy squared s = M2

ππ can be rep-
resented as the ratio N(s)/D(s), where N(s) has a left-
hand cut which is due to “forces” (interactions due to
t- and u-channel exchanges), while D(s) is determined by
the rescatterings in the s-channel.D(s) is given by the dis-
persion integral along the right-hand cut in the complex-s
plane:

A(s) =
N(s)
D(s)

, D(s) = 1−
∞∫

4µ2
π

ds′

π

ρ(s′)N(s′)
s′ − s − i0

. (1)

Here ρ(s) is the invariant ππ phase space, ρ(s) =
(16π)−1

√
(s − 4µ2

π)/s. It was supposed in (1) that
D(s)→ 1 with s → ∞ and CDD-poles are absent (a de-
tailed presention of theN/D-method can be found in [13]).

The N -function can be written as an integral along the
left-hand cut as follows:

N(s) =

sL∫
−∞

ds′

π

L(s′)
s′ − s

, (2)

where the value sL marks the beginning of the left-hand
cut. For example, for the one-meson exchange contribution
g2/(m2−t), the left-hand cut starts at sL = 4µ2

π−m2, and
at this point the N -function has a logarithmic singularity;
for the two-pion exchange sL = 0.

Below we deal with the amplitude a(s) which is defined
as follows:

a(s) =
N(s)

8π
√

s
(
1− P

∫ ∞
4µ2

π

ds′
π

ρ(s′)N(s′)
s′−s

) . (3)

The amplitude a(s) is related to the scattering phase
shift: a(s)

√
s/4− µ2

π = tan δ0
0 . In eq. (3) the thresh-

old singularity is singled out explicitly, so the function
a(s) contains only the left-hand cut together with poles
corresponding to zeros of the denominator of the right-
hand side in (3) which follow from: 1 = P

∫ ∞
4µ2

π
(ds′/π) ·

ρ(s′)N(s′)/(s′ − s). The pole of a(s) at s > 4µ2
π corre-

sponds to the phase shift value δ0
0 = 90◦. The phase of

the ππ scattering reaches the value δ0
0 = 90◦ at

√
s =

M90 	 850MeV. Because of that, the amplitude a(s) may
be represented in the form

a(s) =

sL∫
−∞

ds′

π

α(s′)
s′ − s

+
C

s − M2
90

+D. (4)

To reconstruct the low-mass amplitude the parameters
D,C,M90 and α(s) have been determined by fitting to
the experimental data. In the fit we have used a method,
which has been established in the analysis of the low-
energy nucleon-nucleon amplitudes [12]. Namely, the in-
tegral on the right-hand side of (4) has been replaced by
the sum

sL∫
−∞

ds′

π

α(s′)
s′ − s

→
∑

n

αn

sn − s
(5)

with −∞ < sn ≤ sL.
In the fit to the data for δ0

0 at
√

s ≤ 950MeV, see
fig. 1a, we impose the following constraints on the N/D-
solution in order to sew it to the K-matrix amplitude
found previously at

√
s ∼ 450–1950MeV [4,5]:

i) The N/D-solution curve for a(s), see fig. 1b, should
be inside the corridor determined by the K-matrix solu-
tion at 450MeV≤ √

s ≤ 950MeV: the corridor in fig. 1b is
shown by the error bars for the K-matrix solution points.

ii) The N/D-amplitude should be analytical (not hav-
ing pole singularities) in the following complex-s region
on the second sheet: 0.25GeV2≤ Re s ≤ 0.8GeV2 and
0 ≤ Im s ≤ 0.6GeV2.

The description of data within the N/D-solution,
which uses six terms in the sum (5), is demonstrated in
fig. 1a. The parameters of the solution are as follows (all
values are in µπ units):

M90 = 6.228, C = −13.64, D = 0.316, (6)

(αn, sn) = (2.23,−9.56), (2.21,−10.16),
(2.19,−10.76), (0.247,−32),
(0.246,−36), (0.245,−40).
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Fig. 1. a) Fit to the data on δ0
0 by using the N/D-amplitude.

b) Amplitude a(s) in the N/D–solution (solid curve) and the
K-matrix approach [4,6] (points with error bars).

The scattering length found for this solution is equal

to a0
0 = 0.22µ−1

π (experiment gives a0
0 = 0.26 ± 0.05µ−1

π

[14]), the Adler zero is at s = 0.12µ2
π. The N/D-amplitude

is sewed with the K-matrix amplitude of refs. [4,5], and
fig. 1b demonstrates the level of coincidence for the am-
plitudes a(s) for both solutions (the values of a(s) which
correspond to the K-matrix amplitude are shown with er-
ror bars determined in [4,5]).

The dispersion relation solution has correct analytic
structure at the region |s| < 1GeV2. The amplitude has
no poles on the first sheet of the complex-s plane; the left-
hand cut of the N -function after the replacement given
by eq. (5) is transformed into a set of poles on the neg-
ative piece of the real s-axis: six poles of the amplitude
(at s/µ2

π = −5.2,−9.6,−10.4,−31.6,−36.0,−40.0) rep-

Fig. 2. Complex s plane and singularities of the N/D-
amplitude.

resent the left-hand singularity of N(s). On the second
sheet (under the ππ-cut) the amplitude has two poles: at
s 	 (4 − i14)µ2

π and s 	 (70 − i34)µ2
π (see fig. 2). The

second pole, at s = (70 − i34)µ2
π, is located beyond the

region under consideration for which |s| < 1GeV2 (nev-
ertheless, let us stress that the K-matrix amplitude [4,5]
has a set of poles just in the region of the second pole of
the N/D-amplitude). The pole near the threshold, at

s 	 (4− i14)µ2
π, (7)

is what we discuss. The N/D-amplitude has no poles at
Re

√
s ∼ 600–900MeV despite the phase shift δ0

0 reaches
90◦ here.

In the solution discussed above, eq. (6), the left-hand
singularity is described by six poles. With this number of
poles, the solution is weakly depending on their change: for
example, the five-pole solution with a0

0 = 0.22 µ−1
π gives

practically the same result at Re s > 0 as the six-pole one.
The data do not fix the N/D-amplitude rigidly. The

position of the low-mass pole can be easily varied in
the region Re s ∼ (0–4)µ2

π, and there are subsequent
variations of the scattering length in the interval a0

0 ∼
(0.21–0.28)µ−1

µ and Adler zero at s ∼ (0–1)µ2
π. Ambi-

guities in fixing the σ-pole and Adler zero positions are
mainly due to comparatively large error bars in the mea-
sured δ0

0 near threshold, at
√

s < 350MeV.
Let us stress that the way of reconstruction of the dis-

persion relation amplitude used here differs from the main-
stream attempts to determine the N/D-amplitude. In the
classical N/D procedure, that is the bootstrap one, the
pion-pion amplitude is to be determined by analyticity,
unitarity and crossing symmetry. This means a unique de-
termination of the left-hand cut by the crossed channels.
However, the bootstrap procedure is not carried out till
now; the problems which faces the nowadays bootstrap
program are discussed in ref. [15] and references therein.
Nevertheless, one can try to saturate the left-hand cut by
known resonances in the crossing channels. Usually one
supposes that the dominant contribution to the left-hand
cut comes from the ρ-meson exchange supplemented by
f2(1275) and σ exchanges. Within this scheme the low-
energy amplitude is restored, being controlled by the avail-
able experimental data.

In the scheme used here the amplitude in the physi-
cal region at 450–1950MeV is supposed to be known from
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the K-matrix analysis, and then a continuation of the am-
plitude is performed from 450–900MeV to the region of
smaller masses; the continuation is restricted by the data.
As a result, we restore the pole near the threshold (the
low-mass σ-meson) and the left-hand cut (although with
less accuracy, actually on a qualitative level).

In the approaches which take into account the left-
hand cut as a contribution of certain meson exchanges, the
following locations of the low-mass pole were obtained:

i) dispersion relation approach, s 	 (0.2− i22.5)µ2
π [16],

ii) meson exchange models, s 	 (3.0 − i17.8)µ2
π [17], s 	

(0.5− i13.2)µ2
π [18], s 	 (2.9− i11.8)µ2

π [19],
iii) linear σ-model, s 	 (2.0− i15.5)µ2

π [20].

However, in [21–26], the pole positions were found in
the region of higher s, at s > 7µ2

π, that reflects ambiguities
of the approaches which treat the left-hand cut as a known
quantity.

2 Conclusion

On the basis of the dispersion relation N/D-representa-
tion, we have continued the K-matrix 00++ amplitude
found previously for

√
s = Mππ ∼ 450 − 1950MeV [4,5]

to the ππ threshold region, s ∼ (0 − 4µ2
π); the continua-

tion procedure has been corrected by the low-energy data.
The amplitude found in this way has a pole near the ππ
threshold, at Re s ∼ (0 − 4µ2

π); this pole corresponds to
the light σ-meson. This result is in a qualitative agreement
with that of refs. [16–20] where the analysis of the 00++

amplitude was performed by modelling the left-hand cut
contribution.

With the results for the K-matrix analysis of refs. [4,
5], one has six scalar/isoscalar states in the region be-
low 1800MeV. Five of them are descendants of the qq̄
states (13P0qq̄ and 23P0qq̄) and gluonium. They are
f0(980), f0(1370), f0(1500), f0(1530+30

−250) and f0(1750).
Three states, f0(1370), f0(1500) and f0(1530+30

−250), shared
the gluonium component. There are arguments (see ref. [7]
for details) that the broad state f0(1530+30

−250) is a descen-
dant of the lightest scalar gluonium which mass, according
to lattice calculations [8], is in the region 1500–1700MeV;
an appearance of the broad state f0(1530+30

−250) is due to the
specific effect of accumulation of widths of the overlapping
resonances [27]. So, we conclude that the light σ-meson is
beyond both the qq̄ and gluonium systematics.
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